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Full Wave Single and Double Scatter from Rough Surfaces
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Using the full wave approach, the single and double scattered
electromagnetic fields from deterministic one-dimensional rough
surfaces are computed. Full wave expresstons for the single and
double scattered far fields are given in terms of mulitidimensional
integrals. These integrals are evaluated using the Cornell National
Supercomputer 1BM/3090. Applying the steepest descent approxi-
mation to the double scattered field expressions, the dimensions
of the integrals are reduced from four to two in the case of one-
dimensional rough surfaces. It is shown that double scatter in the
backward direction is significant for near normal incidence when
the rough surface is highly conducting and its mean square slope is
vary large. Even for one-dimensional rough surfaces, depaolarization
oeewrs when the reloionee plane of incidence is not parallel (o the
local planes of incidence and scatter. A geometrical optics approxi-
mation is used to interpret the results of the double scattered fields
for normal incidence near backscatter. The physical interpretation
of the results could shed light on the observed fluctuations in the
enhanced backscatter phenomenon as the angle of incidence in-
creases from near normal to grazing angles. The results show that
double scatter strongly depends upon the mean square slope, the
conductivity of the rough surface and the angte of incidence. = 1994
Academic Press, Int.

I INTRODUCTION

A full wave approach 1o solve probiems of radio wave propa-
gation in irregular media is used to evaluate singie and double
scatter from rough surfuces, The full wave expressions for the
single and double scattered far fields are given in terms of
multidimensional integrals. These integrals arc evaluated using
the Cornell National Supercomputer IBM/3090. The full wave
approach is hased on a complele expansion of the fields and
the imposition of the exact boundary conditions at the irregular
interface. The single scatter tull wave expressions used here
are based on a sceond-order ierative solution of 1he rigorous
generalized tefegraphists”™ equations Tor the scatlercd wave wn-
plitudes Bl -4]. The Tull wivve soluions whicl salisfy reciproc-
ity, duality, and realizability relationships in eleciromagnetic
theory are invariant also to coordinate transformations {5].

In this work both single and double scatter are accounted
for. The double scattered electromagnetic fields are evaluated
from the single scattered fields that impinge upon the surface
before they are rescattered to the observation point. The total
scattered fields presented here are the phasor sums of the single
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and the double scattered fields. Thus the double scattered contri-
butions which were previously ignored are accounted for in
this work, A comparison between the single and the double
scattered ficlds is also given here. This comparison is useful
in interpreting the experimental observations conducted by
Mendez and Q' Donnell [6]. Mendez and O Donnell observed
strong depolurization and enhunced backscatter of light from
random rough surtaces. They examined a number of theoretical
approaches used in rough surface scattering but none of them
account for multipte scatter.

in previous work | 7], the tull wave theory was used 1o imer-
pret the depotarization and the enhanced hackscattering of light
from random rough surfaces observed in measurements con-
ducted by Mendez and O'Donnell for oblique incidence. and
the multiple scatter contributions to the total scattered tields
were ignored.

In this work the {ull wave approach is used 1o evaluate double
scatter (like and cross polarization) in addition to single scatter.
Both self-shadowing and geometrical shadowing effects are
taken into consideration,

The full wave expressions depend on the eleciromagnetic
parameters of the media on both sides of the interface, the
polarization. and the direction of the incident and the scattercd
waves, and the deterministically characterized rough surfuce
height. The incident electromagnetic fields are assumed here
to be plane waves.

A brief summary of the full wave approach, as well as the
multidimensional integral expressions for the single and double
scattered efectromagnetic waves are presented in Section 1. A
stationary phase approximation is given in Section 111 At very
high frequencies, the geometrical optics method is used 1o
interpret the results for the double scattered fields from highty
conducting surfaces with large mean sguare stopes. [Hustrative
exioples e given i Section 1V,

II, FORMULATION OF THE PROBLEM
The interface between medium () and medium ! (character-
ized by the complex permiltivity g, and the permeability ;.

§ =0, 1) is given by (see Fig. 1)

v=f{x, z)

1))
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Reference
Xz Plane

FIG. 1.

The unit vector normal to the rough surface f(x, v, 2) = y —
hx, 7y = 01is

7=V fx,y, MV, 2| (2)
=(~h.a +d, — ha)hi+1+h)"

where ohfox = h, and dhfoz = h.. The exact boundary condi-
tions at the rough interface are

[AXEl =0, [@xH =0, (3)
where h* and #~ denote that the electric and magnetic fields
E and H, respectively, are evaluated just above and below the
intertace y = hix, z).

The full wave solutions for the electromagnetic fields scat-
tered and depolarized by rough surfaces are obtained using
generalized field transforms [1-4]. These generalized field
transforms provide the basis for the (full wave) complete spec-
tral expansion (in three-dimensional space) of the transverse
components of the vertically and the horizontally polarized
electric and magnetic fields in terms of the radiation fields, the
lateral waves, and the guided surface waves of the medium [&].

On substituting the complete field expansions into Maxwell’s
equations for the transverse electric and magnetic field compo-
nents, imposing of the exact boundary condition (3), and using
the biorthogonal properties of the basis functions, the following
rigorous sets of first-order coupled ordinary differential equa-
tions are obtained

,
=SS f (SE a® + S 59) dw — AC  (da)
g v

dx

581/115/2-11
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(a) Plane of incidence, scattering plane, and reference x, 7 plane. (b) Local planes of incideace and scatter and local coordinate system,

:
oAy = S X [ (il 50 dw + 5

g=VandH, P=VorH. {4h)
The symbol X, f dw denotes the summation and the integration
over the complete wave spectrum associated with branch cuts
Im{v,) = 0 {radiation field), Im(v,) = 0 (lateral waves) and
the poie of the Fresnel reflection coefficients (surface waves).
The forward and backward wave amplitude are &" and 5", and
538, « # B, are the transmission scattering coefficients, Sk,
a = A or B, are the reflection scattering coefficients, and &' is
the x-comporent of the wave vector &/ in the scatter direction

k=kn=wa+va+wa. j=01 (3)

The guantities A9 and B¢ are the generalized transforms of the
source terms.

A second-order iterative approach is used to solve the 1ele-
graphists’ equations (4) for the wave amplitudes. For the sup-
pressed exp( jwi) time excitation, the fuil wave solutions for the
single scattered radiation field from a two-dimensional rough
surface f(x, ¥, 2) = ¥ — h{x, z) are given in matrix form as
[9-12]

b \?
o= ()

X e G(D0)

o dn
J I 5T DGv 7y e 7772 07) =

M,
(6a)
dx, dz,

n-a,

in which k&, = @V e, is the free space wave number. The
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unit vectors #’ and %' are in the directions of the scaitered and
incident waves:

X
Il

m G +na,+nrla) A=(da +na) (6b)

(6¢)

The radius vectors from the arigin to the rough surface and to
the observation point are r, and r, respectively, where

Fo=x.da,+ RA(x, z)a, + z,a., F=xa.+ya,+za. (6d)

The shadow function U(¥,) is given by

1. illuminated and visible surface

Ury = { (7

0, nonilluminated or nonvisible surface.

Thus, the integrand in (6-a) vanishes for points on the rough
surface which are not illuminated by the incident plane wave
or visible at the observation point.

The elements of 2 X | matrices G(0) and G/A¥) are the
vertically and the horizontally polarized field componernts (de-
noted by superscripts V and H, respectively) of the incident
and scatiered waves relative to the reference planes of incidence
and scatter normal to 7' X @, and # X @,, respectively (see

Fig. 1),
EVJ HV;‘
G0 = [:EHE:I = [HH.:I

B EY HY
G(r) = I:ngj] =7 l:HHf:'

where 7, = Vu, /e, is the intrinsic impedance for the free
space. Note that G'(0) denotes the incident plane wave at the
origin while exp(— jE" T) G0y = G(F,) is the incident plane
wave at an arbitrary point on the rough surface. The 2 X 2
scattering matrix D(&’, 7'} is given by

(8a)

(8b)

DR 7Yy =Cr T F(r',R)Y T, (9-a)
where Ci' = —#'- 7 is the cosine of the local angle of incidence
{see Fig. ). The elements of the 2 X 2 scattering matrix
F(n', 7" depend on the polarizations and the directions of the
incident and scattered waves, the unit vector # normal to the
rough surface, and the electromagnetic parameters of the media
on both sides of the rough interface. In general the permittivity
and the permeability of medium 1, v < h(x, ), can be complex
to account for the dissipation of electromagnetic fields. The
2 X 2 scattering matrix F(7',n') is given by
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FW RV
] . (9b)

F(r', )= [F”V o
The matrix operator 7* transforms the waves that are vertically
and horizontally polarized with respect to the reference plane
of incidence {normal to 7' X @,) into vertically and horizontaily
polarized waves with respect to the local plane of incidence
{normal to i X 7). Similarly, the matrix operator T/ transforms
the waves that are vertically and horizontally polarized with
respect Lo the local plane of scatter (normal to #/ X %) back
into vertically and horizontally polarized waves with respect
to the reference plane of scatter (normal to 7/ % a.).

The nonilluminated (self-shadow) boundary is determined
by the locus of the points on the rough surface (r, = ;) that
satisfy

ntH(F) = 0. (10a)
The shadow boundary extends to the locus of points 7, = 7,
given by
{(Fa = F)-a(ry) = 0. (10b)
Similarly, the nonvisible region of the rough surface extends
from the locus of points 7, = #, to the locus of the points
¥, = ¥, where

nfR(F) =0 {10c)

(P — Fai-Aa(F) = 0. (10d)
For a one-dimensional rough surface A(x), with 7 in the plane
of incidence, D(R’, #1") is a diagonal matrix (no depolarization,
provided that r'-@. = 0). In this case the integration in {6a)
with respect to z, reduces to the Dirac delta function &(s.), where

ko (= .
a(nj) =20 . el gz, dZ,;. (] ])

C2ml-

Thus on performing the integration with respect to n!, the
integrai in (6a) reduces fo

.k AR i dny
G = 2 SR 0 gy
7 - @y e (12a)

X 7 G0} dx,,
where for these two-dimensional field expressions
(12b}

¥, = xa; + h(x)a,, ¥=xa, +ya,.

Assuming that ko 2> 1, we can use the steepest descent method
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{(x.y.2)
{observation)

FIG. 2. The double scattered eléctromagnelic waves.

[13] to integrate (12a) with respect to n, to obtain the single
scattered far fields,

—f =iy _
GIrY = Goky f 9&—"#@”'“ Ulr) de, G'AQ),  (13a)
(" ) a_r)
where
Gy = —e/™e ™ N ukyr {13b)
r=Vy+3y, U=k -7 (13e)

The full wave expression (12) can also be used to determine
the single scattered field G, incident upon the rough surface
at 7> (see Fig. 2). Thus using {12a) it follows that

J,J.,D(:q ,71) S RN U(m)_,’
77, e (14)

Gofrg) =

X e T GUO) dixy,

where 7, and 7, are the radius vectors 1o poinis 1 and 2,
respectively, on the rough sarface, 7, is the normal to the
rough surface at v, =7, and U(r,) is the shadow function
at point i on the rough surface. Thus (14) can also be
rewritten as

-k R
Gi(ro) = Tﬂf J 9&_”_‘?’2_) e i
P nta, n; (153)

X e GHOY dx,,
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where 7 is the radius vector from point 1 to point 2 on the

surface in the x — y plane:
= Xg) a, v (Alxg) — (15b)

Py = (X hlx,)a, = ns ry)

and

ri = Vg — a0 + () — Alx,)Y. (I5¢)
Assuming that kgrs, 2 1, the steepest descent method can be
used 1o integrate {15a) with respect-to »;; thus the integrand

in {154) reduces to

UGy = = =L g s 26T
2mkyry, a &

X e i T GH(0) ko di

U(r\])
(16

The above expression is obviously not valid for regions where
ko is not sufficiently large. For highly conducting surfaces it
is assured that most of the incident power is scattered above
the air~conductor interface. Thus the full wave solution for the
double scatiered fields G4(F) are obtained by replacing exp(— jky
7'+ 7.) GH(0). the incident field at 7,, in (12a) by G«(F.), see Fig.
2. 1t follows that

Gip = o | [T ”’ R T (T )

Utz a,) a7
dny
XGZ(rGZ) a dch
ﬂ(
Thus,
_ k3 DG AYDR LAY
G'f = . - 2 ¢
0=l I = Vo U
5 BJL"("” Fom il (Fa=Fn e—""vﬁ" -dﬂ dn\ (18)
n.r ”r

X e T GH0) dx,, dx.

Assuming that kor 2 1, we can apply the sieepest descent
method to integrate with respect to 7 ; thus

D(n',n") D(n', i)

STl o= iy
25ifkor e mIS (f12-a) (i) (19a)

(r)kq

- - | M .
UGFg) UGF) X e 7o B i) X e dyy GO),

"y

where
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FIG. 3. [ntegrand of lE""'[ for & =0, 0/ = 0, Aldy = 12,1093, hy/ Ay =
4.0,k = 21537, max. slope = 64.37-. g, = —11.43-j1.24 (gold, A, = 0.633
), g, = 1

r=Vxt+yl, nl=nl=n=0. (19b)

Assuming that kyry, = 1, we can apply the steepest descent
method to integrate with respect to n;. Thus (19) reduces to

(k) D(, Tin} D(7, )
Gir) = (-—) g~ g
‘ 2m I (-7, (7, -8,) Vrar

e R I .
Kt Fa= Ty g horn x| dx, GHO)

U(ro) UFa)
{20)

in which D(#.7,,) and D(f,,#"y are evaluated at points
roand ), respectively. Even though the above approximation
for the integrand is only valid when kg, 2 1, (20) can be used
1o evaluate G/(7) instead of (19) if the scattering coefficients
(9) vanish as 7o — 7,y and ny, -1, = Ry, 7 = 0 (see Fig. 3 in
which £ — 0 as x; — x3). In general the three-dimensional
integral (19) provides more accurate results for the double
scattered fieids than the two-dimensional integral (20). This is

FIG. 4. Stationary phase paths for N = 4,
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discussed in detail in Section IV, where illustrative examples
are presented.

The point at 7, on the rough surface should be illuminated
by the incident plane wave and visible at the point ¥, on the
surface, while the point at 7; should be illuminated by a source
at r, on the surface and visible at the observation point at ¥
(see Fig. 2). Generally two sets of shadowing conditions should
be satisfied. The point at ¥, must satisfy the shadowed condi-
tions {10a), (10b). Thus

nm=xi or

fore =0 (21a)

(21b)

xp=xi or x,=xy ford'=m.

Similarly, the point at 7, must satisfy the shadow conditions
(10c), (10d). Thus

forgp/ =90

for /= 1.

21¢)

Xp=xh oor xpesxd
X 21dy

xp=xf or xp=xh

If the conditions (21a)—(21b) and/or (21¢)—(21d) are not satis-
fied then U(r,) and U(r,) are equal to zero. The points at
¥, and at ¥; must be visible to each other.

Since the rough surface is assumed here to be one-dimen-
sional, if W', 1/, &,, and A lie in the same plane then sin{¢* —
@™ = 0 and F* = F*" = 0 [9]. Thus the matrices D(i, i)
and D(hay, 7)) in (20) are diagonal.

Even though the integrand in (20) contains the term
1/\/?2_,, the integrand converges smoothly to zero as r,, — 7
for finitely conducting surfaces. This is because D(#/, 7)) and
D(7,,, @) vanish as #y * 7; and 7., - R, vanish as ¥y, — ro. For
perfectly conducting surfaces the expression for F*¥ does not
vanish as ¥, approaches 7,,. In this case the three-dimensional
integral (19) is used to compute G4(¥) for the one-dimensional
rough surface.

III. GEOMETRICAL OPTICS APPROXIMATION

The geometrical optics approximation of the solution pro-
vides physical interpretation of the results. At very high frequen-
cies the major contributtons to the double scattered fields come
only from the neighborhood of points 1 and 2 on the surface
at which the phase kyd(x,,, x,2) in the integrand (20) is stationary.
The function @ix,, s} in (20) 1s given by

A, x0) = (W -Fo =1 Foy — 1)) (22)
On differentiating ¢(x,,, x,;) with respect to x,; and x.,, respec-
tively, and equating the two derivatives to zero, the solution is
obtained for the pth pair of stationary phase (specular) points
Xy, Xy, (see Fig. 4). Thus in the high frequency limit the station-

ary phase method can be used to evaluate the double integral
in (20), as [14]
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N o ek
Gla. =K z {[M e“ﬂwa"’:} . [—‘C = :I
- = (7~ ) Vkora,

% [D(ﬁflﬁu"_’i)

(ﬁ,,, “d,

(23a)

e Rl T Gf(@)“. p=1,23 ..\

where G, is the geometrical optics solution for the double
scattered electromagnetic field. The subscript p defines the pth
stationary phase path associated with the pth pair of specular
points at 7, and ¥,,. The normals at these points are #,, and
#y,. The distance vector between the pth pair of specular points
i8 Faiy = Tap — Fup = 1oy, 1, Where iy, 1s 2 unit vector. Further-
more, r{ =r — Topt 7' is the distance from point 2 on the surface
to the observation point. The number of the stationary phase
paths on the rough surface is ¥ (see Fig. 4). The interference
between the contributions from the different stationary phase
paths results in the fluctuations in the double scattered fields.
The constant K is given by [14]

ook ] (23b)
v ]O‘B - _yzi ku-’”.

where the second derivaiives a, B, and y of dix,, 1) are all
evatuated a1 (x,, x;,), and o is a constant associated with «,
B, and y [14].

The diagonal elements of the matrices F (9b) reduce 1o the
Fresnel reflection coefficients (for the vertically and horizon-
taily polarized waves) at the pair of stationary phase points,

where 6, — 67 and 67,
3.5 3
¢ double (2-D integraticn)
v deuble (3-D integration)
3.07—
2.5+
2.0+
o A
k= I
= & : ?
1.59 .
4
1.04
0.5+
0.0 I T 1 T i {
-90 —60 -30 0 20 60 90
BI COS«Jf
FIG. 5. [E™| for & = 0. &' = 0, A/, = 12,1095, hih, = 4.0. by =

2.1537, max. slope = 64.24°, g, = —11.43j1.24 (gotd. Ay = 0.633 um), 1, = 1.
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4

» deuble
4 single

s double+single

3

0

=50

FIG. 6. |E™)dor & = 0, &' = 0, AJy) = 121095, kyfdy = 40, () =
21537, max. slope = 64.24 . e, = — 11435124 (gold, A, = 0.633 ). 1, = 1.

FR S RAen. FESRD, 0=V.H (230

F:d

In the above derivations the stationary phase points are as-
sumed to be isolated (the distance between pairs of specular
points is larger than the wavelength). It the pairs of stationary
phase points are nearby, a different asymptotic expression for
the geometrical optics approximation should be used 135, 16].

IV. ILLUSTRATIVE EXAMPLES

In this section numerical exampies are presented for the
double scattered electromagnetic far fields. They are also com-
pared with the single scattered electromagnetic far fields. Exam-
ples for both horizontally and vertically polarized scattered
fields are given. Scattering from rough surfaces characterized
by different complex permittivities and mean square slopes and
heights are also computed for different incident angles. The
incident excitations are assumed to be plane waves. The scat-
tered fields are evaluated in the far zone (cylindrical waves).
The rough surface is assumed to be the one-dimensional rough
surface h(x):

h(x) = fpcos(Zax/A), O<<x <A, (24)
The parameters by and A are related to the mean square height
(W’y = hi/2 and mean squares slopes (A2 = 2AThy/AY. 1t is
convement 1o normalize all distances with respect to the free
space wavelength Ag.
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+ double W
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s dpouble+single
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FIG.7. 1E™|for & = 0,07 = 0, A/hy = 14.0. hyt Ao = 2.0, (b = 0.402,

max. slope = 41.9% g, = ~11.431.24 (gold, A, = 0.633 pwan), u, = I.

A comparison of the double scattered fields computed by
evaluating the three-dimensional integration (19) (3D) and the
two-dimensional integration (20} (2D), is given in Fig. 5. The
magnitude of the horizontally polarized double scattered elec-
womagnetic fields |E¥ are plotied in the plane of incidence
as functions of #'cos ¢ for normal incidence. The rough surface
15 assumed to be gold coated (&, = —11.43-j1.24 at A, = 0.633
prn), hyf Ay = 4.0, and AfAy = 12.1095, corresponding to mean
square slope (A7) = 2.1537 and maximum slope 64.27°. The
results show that {E"’”l evaluated using (i19) and (20) are in
good agreement. Computing the two-dimensional integrals (2(})
using the supercomputer for backscatter at normal incidence
takes about 100 cpu seconds. OGn the other hand, computing
the three-dimensional integration (19} using the supercomputer
for backscalter at normal incidence takes about 1000 ¢pu sec-
onds. The program to compute the vertically polarized double
scattered fields at different angles of scatter was also run using
four parallel processors. Comparison of the corresponding wall-
clock time and the cpu time showed a significant reduction in
the wall-clock time |12, 15).

For plane wave excitations at normal incidence the fields
scattered from perfectly conducting and from gold coated rough
surfaces with different mean square slopes are given in Figs.
6-8. The magnitude of the horizontally polarized scattered
fields |E"| in the incident plane (¢! = 0, ) are plotted as
functions of 6/ cos ¢'. The single, the double, and the phasor
sum (single + double) are shown separately in these figures.
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In Figs. 6 and 7, the rough surface is assumed to be gold coated
(g, = —1143-1.24 at Ay 0.633 wm) and in Fig. 8 it is
assumed to be perfectly conducting. In Fig. 6 hy/A, = 4 and
AJAy = 12,1095 in Fig. 7 ho/Aq = 2 and AfAy = 14.0; in Fig.
8 hy/Ao = 23721 and A/Ay = 20. The corresponding mean
square slopes und maximum slopes are also given in the figures
caption, Note that the double scauer fields decrease as the
maximum slope of the surface decreases (Figs. 6-8). The resulis
shown in Figs. 6-8 indicate that the horizontally polarized
double scattered electromagnetic fieids from highly conducting
rough surfaces with large mean square slopes are significant at
normal incidence near the backscatter divection. However, the
like-polarized single scattered fields dominate for all scatter
angles when the rough surface mean squares slopes are small,
as shown in Fig. 8. When the maximum slope of the surface
becomes less than 45°, (k.. = 1, the stationary phase (specu-
lar) points do not exist on the rough surface and the geometrical
optics solution (23a) is not valid. The full wave solations for
the double scattered fields do not vanish for (b)), < 1. How-
ever, when pairs of stationary phase points exist (see Fig. 4),

9%he double scatter fields are significant.

The results for the scattered fields for obligue incident angles
are shown in Figs. 9 and 10. The magnitude of the vertically
polarized electromagnetic scatiered fields |EYY] are plotted in
the plane of incidence {¢' = 0, 7) as functions of 6 cos ¢’
{single, double, and phasor sum (single + double)). The rough
surface is assumed to be gold coated (g, = —11.43-j1.24 at
Ay = 0.633 pm) and AJ/A; = 4 while A/A, = 12.1095. In Fig.
9 the ncident angle is & = 45° and in Fig. 10, ¢ = 65°,

7
W * double
6 ! s single {
! s double+single
- []
1
5+ { i
i
bbb
N
§m3_t_ E:’;:‘éil?;
- }1 1311
N
2+ |y
R
ol
1+ Hoy
Hon F
g i
- POTTOPE st gt PPVUTIE JUUTVOC . Lat Mt PP -
0 i T 1 T ]
-30 —-60 -30 0 30 60 a0
g8 cos ¥

FIG. 8. [E™| for & = 0. & = 0. Afh, = 200, h/A, = 23721 (kY =
0.2776, max. slope = 36.0%°. |e,| 3 1 (perfect conductor), g, = |.
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+ double ‘)
5

ﬂ. » gingle
\; = deuble+single
]
]
¥
]

Vv
fo =t

IE

—60

FIG. 9. {E'] for # = 45°. 4 = 0, Al = 12,1095, hyfhy = 4.0, (b =
21537, max. slope = 64.27° &, = —11.43-/1.24 (gold. Ay = 0.633 pm),

mo= L

V. CONCLUDING REMARKS

Using the full-wave approach, explicit integral expressions
are given for the single and the double scattered electromag-
netic fields from one-dimensional (deterministic) rough sur-
faces. For the single scattered fields the integrals are one-
dimensional. However, the double scattered fields are ex-
pressed as two- and three-dimensional integrals. Both self-
shadowing and geometrical shadowing are accounted for in
these expressions. The results indicate that double scatter is
significant at backscatter for near normal incidence when
the mean square slope is large and the rough surface is
highly reflective.

At high frequencies, the major contributions of the double
scattered  electromagnetic fields come primanly from the
neighborhood of the specular points on the rough surface
(where the phase is stationary). The geometrical optics approx-
imation can be also used to evaluate the double backscattered
fteids for normal incidence. These geometric optic results
cart only be used when the distance between the stationary
phase points ry, in (23a) is larger than 3A; [16]. The
interference between field contributions from different station-
ary phase paths results in the fluctuations observed in the
double scattered fields in the near backscatter direction for
normal incidence.

For the one-dimensional rough surface the vertically polar-
ized single scattered fields are larger than the horizontally polar-
ized single scattered fields. However, the horizontally polarized
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+

*« double

I » gsingle
f\

o double+single

30 60 90

FIG, 10 [E™] for ¢ = 65° O = 0, Afh, = 121095, hoih, = 440,
(hy = 2.1537, max. slope = 64.27°. &, = —11.43-j1.24 (gold. A, = 0.633
pm). pe =1

double scattered fields are larger than the vertically polarized
double scattered fields. This is consistent with energy conserva-
tion for highly reflecting surfaces [16].

Several parameters that affect the double scattered electro-
magnetic fields such as the mean square slope of the surface,
the complex permittivities of the medium, and the angle of
incidence are examined. The results of multiple scatiering
from realistic models of rough surfaces consisting of individ-
ual surface scatterers provide additional physical insight to

the problem of multiple scattering from random rough surfaces
[16, 17].

ACKNOWLEDGMENTS

The computational work was conducted at the Cornell National Supercom-
puter Facility supported by NSF. The research is sponsored by the U.S. Army
Research Office Contract DAALO3R7-K-0085.

REFERENCES

. E. Bahar. /. Math. Phvs, 14(11). 1502 (1973).

. E. Bubar, J. Math. Phvs, 14{11), (1973).

. E. Bahar, Canad. J. Phvs. 50(24). {1972).

. E. Bahar, Canad. J. Phvs. 50024}, 3132 {1972).

. E. Bahar, IEEE Trans. Antennas Propagat. AP-29(3), (1981),

K. A. O'Denncll and E, R. Mendez, J. Opt. Soc. Am. A 4(7). (1987).
. E. Bahar and M. A_ Fitzwater. J. Opt. Soc. Am. A 6(1). (1989).

S R W —



398

8.

L. M. Brekhovskikh, Waves in Lavered Media (Academic Press. New
York, 1960).

. E. Bahar, IEEE Trans. Antennay Propagat. AP-28(1), (1980).
10.
li.

E. Bahar, /EEE Trans. Antennas Propagat. AP-30{(4), (1982).

E. Bahar and M. El-Shenawee. ‘'Full Wave Multiple Scattering from
Rough Surfaces,”” in Proceedings, IEEFE fnternational Svmposium, Dallus,
Texas, May 7, 1990,

. E. Bahar and M. El-8henawee, “*Use of Supercomputers to Evaluate

Singty and Doubly Scattered Electrumagnetic Fields from Routh Sur-
faces.”" in Proceedings, Fourth Biennial 1EEE Conference on Eleciro-
magnetic Fields Computation, Toronto, Canada, October 22-24, 1990.

13.

BAHAR AND EL-SHENAWEE

K. G. Budden. Radic Waves in the lonosphere (Cambridge Univ. Press,
Cambridge, UK, 1966).

. M. Born and E. Wolf, Principles of Oprics (Pergamon, Elmstord, NY,

1963).

. E. Babar and M. El-Shenawee, JEEE Trans. Magn. Sept.. p. 4287

(1991}.

. M. El-Shenawee, Ph.D. thesis, University of Nebraska-Lincoln, August

17, 1991.

. E. Bahar and M. El-Shenawee. "*Multiple Scattering from Random Distri-

butions of Individual Rough Surface Scatterers,”” in IEEE-APS Interna-
tional Sxmposium and URSH Radio Meeting ar Chicago, July 18-25, 1992,



